JavaScript Codes بزرگترین سایت جاوا اسکریپت ایران
سفارش تبلیغ
صبا ویژن

از زیباترین استدلال های یونان قدیم - دنیای مقالات
سفارش تبلیغ
صبا ویژن
فروتر علم آن است که بر سر زبان است و برترین ، آن که میان دل و جان است . [نهج البلاغه]
از زیباترین استدلال های یونان قدیم - دنیای مقالات
  • تماس با من
  • شناسنامه
  •  RSS 
  • پارسی بلاگ
  • پارسی یار
  • در یاهو
  • یکی از زیباترین استدلالهایی که ریاضی دانان یونان پس از شناخت رابطه فیثاغورث و آشنایی با مثلث قائم الزاویه ای که دو ضلع مجاور به وتر آن بطول 1 بود انجام داده اند آن است که "رادیکال دو" (2√) یا همان ریشه دوم عدد 2 نمی تواند یک عدد گویا باشد.

    استدلال آنها بسیار ساده بود در نظر می گیریم که ریشه دوم عدد 2 بصورت یک کسر گویا (2√=a/b) بیان شود. همچنین فرض می کنیم که a/b کسر ساده شده می باشد و صورت و مخرج مقسوم علیه مشترک ندارند. در آنصورت اگر طرفین معادله را در خود ضرب کنیم (یا به توان دو برسانیم) باید داشته باشیم : a2/b2=2

    بنابراین خواهیم داشت که : a2=2b2

    رابطه اخیر نشان می دهد که a2 یک عدد زوج می باشد، بسادگی می توان نتیجه گرفت که a نیز باید عدد زوج باشد (چرا؟) ، بنابراین اگر a را بصورت 2t نمایش دهیم خواهیم داشت : 4t2=2b2

    اگر معادله بالا را ساده کنیم خواهیم داشت که : b2=2t2

    یعنی b هم یک عدد زوج می باشد(چرا؟) ، بنابراین a و b هر دو مقسوم علیه مشترکی مساوی 2 دارند و این مخالف فرضی است که در ابتدا انجام دادیم. بنابراین نمی توان عدد رادیکال دو را بصورت یک کسر گویا نمایش داد.


    Akb@r.Hemm@ti ::: جمعه 86/4/8::: ساعت 6:36 عصر
    نظرات دیگران: نظر

    لیست کل یادداشت های دنیای مقالات

    >> بازدیدهای وبلاگ <<
    بازدید امروز: 282
    بازدید دیروز: 1397
    کل بازدید :788020

    >>اوقات شرعی <<

    >> درباره خودم <<
    از زیباترین استدلال های یونان قدیم - دنیای مقالات
    Akb@r.Hemm@ti
    در مورد خودم زیاد مهم نیست

    >> پیوند دنیای مقالات <<

    >>لوگوی دنیای مقالات<<
    از زیباترین استدلال های یونان قدیم - دنیای مقالات

    >>لینک دوستان<<

    >>لوگوی دوستان<<

    >> فهرست دنیای مقالات <<

    >>بایگانی<<

    >>جستجو در متن و بایگانی دنیای مقالات <<
    جستجو:

    >>اشتراک در دنیای مقالات<<
     



    >>طراح قالب<<